Linear Algebra II

Mid-term Examination

Instructions: All questions carry ten marks. Vector spaces are assumed to be finite dimensional.

1. Let $T: V \rightarrow V$ be a linear operator on vector space of dimension n over a field F. Assume that T has n distinct eigen values in F. Prove that there exists a basis \mathcal{B} of V with respect to which the matrix of T is a diagonal matrix.
2. Let T_{1}, T_{2} be linear operators on a vector space V over a field F such that $T_{1} \circ T_{2}=T_{2} \circ T_{1}$. Let V_{λ} denote the subspace of V consisting of vectors v such that $T(v)=\lambda v$. Prove that V_{λ} is T_{2}-invariant. If $V_{\lambda} \neq\{0\}$, then will it have to contain eigen vectors for T_{2} ? Justify your answer.
3. Let V be a vector space over \mathbb{C}. Let $<,>$ be a Hermitian form on V. Prove that it is positive definite if and only if there exists an orthonormal basis of V with respect to $<,>$.
4. Define Hermitian matrix. Prove that a complex matrix of order n is Hermitian if and only if $X^{*} A X$ is a real number for every column vector $X \in \mathbb{C}^{n}$.
5. Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

Find an orthonormal basis of \mathbb{R}^{2} with repect to the bilinear form given by A.

