Linear Algebra II

Mid-term Examination

Instructions: All questions carry ten marks. Vector spaces are assumed to be finite dimensional.

- 1. Let $T: V \to V$ be a linear operator on vector space of dimension n over a field F. Assume that T has n distinct eigen values in F. Prove that there exists a basis \mathcal{B} of V with respect to which the matrix of T is a diagonal matrix.
- 2. Let T_1, T_2 be linear operators on a vector space V over a field F such that $T_1 \circ T_2 = T_2 \circ T_1$. Let V_{λ} denote the subspace of V consisting of vectors v such that $T(v) = \lambda v$. Prove that V_{λ} is T_2 -invariant. If $V_{\lambda} \neq \{0\}$, then will it have to contain eigen vectors for T_2 ? Justify your answer.
- 3. Let V be a vector space over \mathbb{C} . Let \langle , \rangle be a Hermitian form on V. Prove that it is positive definite if and only if there exists an orthonormal basis of V with respect to \langle , \rangle .
- 4. Define Hermitian matrix. Prove that a complex matrix of order n is Hermitian if and only if X^*AX is a real number for every column vector $X \in \mathbb{C}^n$.
- 5. Let

$$A = \left[\begin{array}{cc} 1 & 2\\ 2 & 1 \end{array} \right]$$

Find an orthonormal basis of \mathbb{R}^2 with repect to the bilinear form given by A.